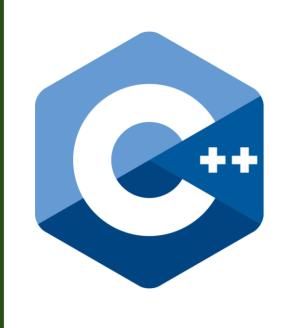
Towards Offloading C/C++ Kernels and ONNX Models to CGRAs through MLIR

Nelson Neto^{1,2}, José Pedro Ferreira^{1,2}, Pedro Gonçalo Correia^{1,2}, Juan Gallego³, Alfonso Rodríguez³, Andrés Otero³, Nuno Paulino^{1,2}, João Bispo^{1,2}

Motivation



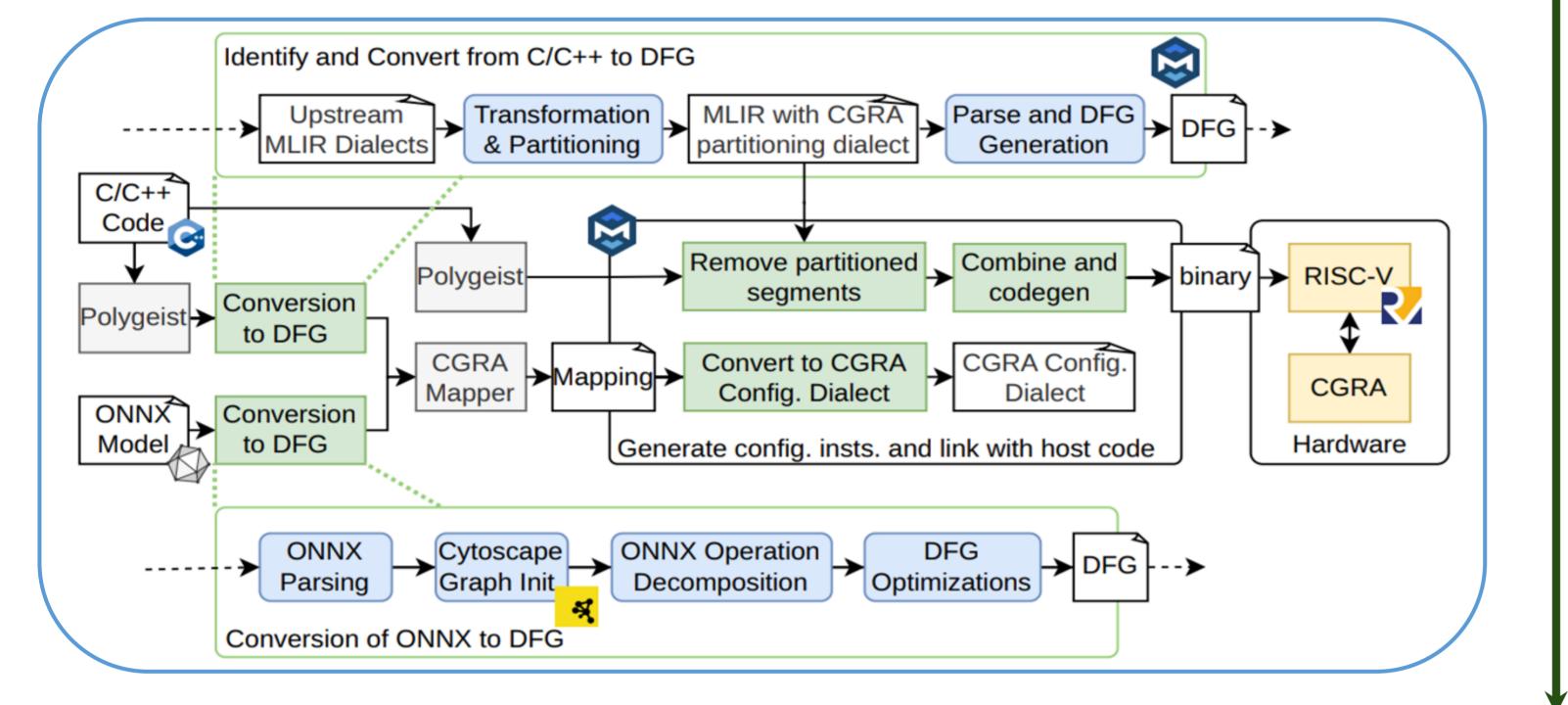
Offloading edge AI applications to CGRAs is convenient because:

- Increasing edge AI applications requires efficient execution platforms.
- GPUs and FPGAs present scalability and energy-consumption challenges.
- CGRAs offer promising performance-energy balance for edge AI.

C/C++ Path: MLIR Dialect for DFG Extraction

- Polygeist tool converts source code to MLIR.
- MLIR-based extraction of vectorized computation kernels as Data Flow Graphs (DFGs).
- Custom MLIR dialect identifies operations compatible with available CGRA processing elements for acceleration.

Architecture Diagram



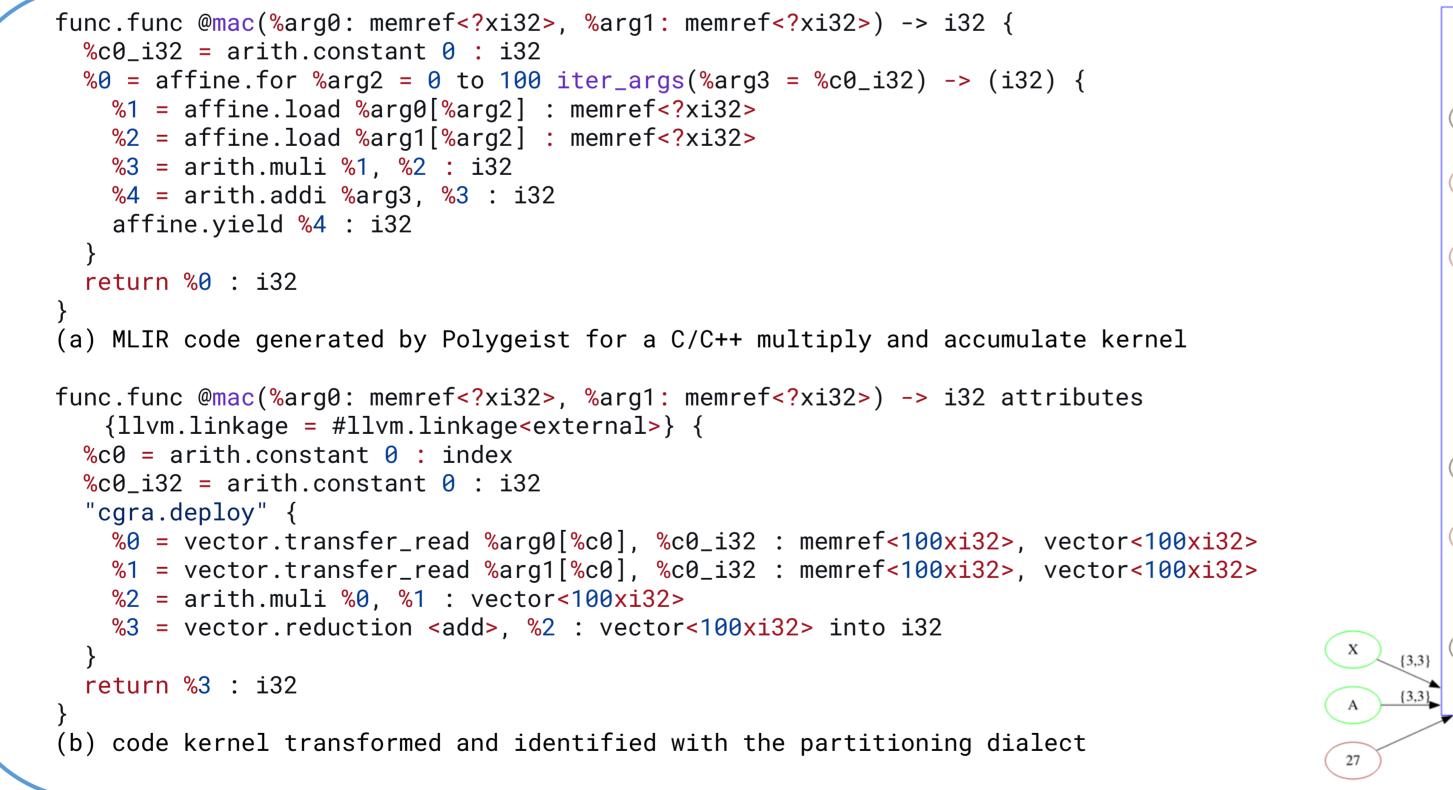
ONNX Path: Operation Decomposition

- Direct ONNX parsing into structured JSON objects and Cytoscape graphs.
- Decomposition of high-level ONNX operations (like MatMul) into lower-level arithmetic/memory operations.
- Generation of detailed DFGs, suitable for mapping onto CGRA.

Key Contributions

- Unified MLIR-based compilation workflow targeting both C/C++ kernels and ONNX AI models for CGRA acceleration.
- Preserves high-level graph semantics throughout compilation, enhancing opportunities for optimization and debugging.
- Seamless integration of CGRA configuration instructions directly into RISC-V executable binaries, removing the need for external configuration memory.
- Streamlines the deployment process and accelerates the practical adoption of edge AI applications.

Results - Data Flow Graphs suitable for CGRA Mapping



Addition Multiplication Multiplication Multiplication

Ongoing Work

Conclusion

- Improving automatic identification and partitioning of CGRA-compatible computations.
- Implementing more powerful loop-level optimizations in the MLIR dialect.
- Extending ONNX support for diverse tensor operations.
- Refining validation methods.

This workflow successfully unifies compilation of C/C++ kernels and ONNX models into a common graph format for CGRA acceleration. By preserving high-level semantics and embedding configuration directly in RISC-V binaries, it simplifies deployment and enhances edge AI performance, but can still be further optimized and extended.

Supported by Chips Joint Undertaking (Chips JU) and National

Supported by Fundação para a Ciência e Tecnologia (FCT) PhD scholarship 2024.05584.BDANA

Project PCI2022-135077-2 funded by MICIU/AEI /10.13039/501100011033 and by European Union NextGenerationEU/PRTR (nº 101096658)

