
Motivation

Offloading edge AI applications to CGRAs is convenient because:
● Increasing edge AI applications requires efficient execution platforms.
● GPUs and FPGAs present scalability and energy-consumption challenges.
● CGRAs offer promising performance-energy balance for edge AI.

C/C++ Path: MLIR Dialect for DFG Extraction

● Polygeist tool converts source code to MLIR.
● MLIR-based extraction of vectorized computation kernels as 

Data Flow Graphs (DFGs).
● Custom MLIR dialect identifies operations compatible with 

available CGRA processing elements for acceleration.

ONNX Path: Operation Decomposition

● Direct ONNX parsing into structured JSON objects and 
Cytoscape graphs.

● Decomposition of high-level ONNX operations (like MatMul) 
into lower-level arithmetic/memory operations.

● Generation of detailed DFGs, suitable for mapping onto CGRA.

Ongoing Work

● Improving automatic identification and partitioning of CGRA-compatible computations.
● Implementing more powerful loop-level optimizations in the MLIR dialect.
● Extending ONNX support for diverse tensor operations.
● Refining validation methods.

● Unified MLIR-based compilation workflow targeting both 
C/C++ kernels and ONNX AI models for CGRA acceleration.

● Preserves high-level graph semantics throughout compilation, 
enhancing opportunities for optimization and debugging.

● Seamless integration of CGRA configuration instructions 
directly into RISC-V executable binaries, removing the need 
for external configuration memory.

● Streamlines the deployment process and accelerates the 
practical adoption of edge AI applications.

Results - Data Flow Graphs suitable for CGRA Mapping
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Conclusion

This workflow successfully unifies compilation of C/C++ kernels and ONNX models into a 
common graph format for CGRA acceleration. By preserving high-level semantics and 
embedding configuration directly in RISC-V binaries, it simplifies deployment and enhances 
edge AI performance, but can still be further optimized and extended.

Architecture Diagram Key Contributions

func.func @mac(%arg0: memref<?xi32>, %arg1: memref<?xi32>) -> i32 {
%c0_i32 = arith.constant 0 : i32
%0 = affine.for %arg2 = 0 to 100 iter_args(%arg3 = %c0_i32) -> (i32) {
%1 = affine.load %arg0[%arg2] : memref<?xi32>
%2 = affine.load %arg1[%arg2] : memref<?xi32>
%3 = arith.muli %1, %2 : i32
%4 = arith.addi %arg3, %3 : i32
affine.yield %4 : i32

}
return %0 : i32

}
(a) MLIR code generated by Polygeist for a C/C++ multiply and accumulate kernel

func.func @mac(%arg0: memref<?xi32>, %arg1: memref<?xi32>) -> i32 attributes
{llvm.linkage = #llvm.linkage<external>} {

%c0 = arith.constant 0 : index
%c0_i32 = arith.constant 0 : i32
"cgra.deploy" {
%0 = vector.transfer_read %arg0[%c0], %c0_i32 : memref<100xi32>, vector<100xi32>
%1 = vector.transfer_read %arg1[%c0], %c0_i32 : memref<100xi32>, vector<100xi32>
%2 = arith.muli %0, %1 : vector<100xi32>
%3 = vector.reduction <add>, %2 : vector<100xi32> into i32

}
return %3 : i32

}
(b) code kernel transformed and identified with the partitioning dialect

Project PCI2022-135077-2 funded by MICIU/AEI /10.13039/501100011033 and by 
European Union NextGenerationEU/PRTR (nº 101096658)

1 2

3Supported by Fundação para a Ciência e Tecnologia 
(FCT) PhD scholarship 2024.05584.BDANA

Supported by Chips Joint Undertaking (Chips JU) and National 
Authorities under grant agreement n° 101096658 (A-IQ READY)


	Slide 1

