
Motivation

Offloading edge AI applications to CGRAs is convenient because:
● Increasing edge AI applications requires efficient execution platforms.
● GPUs and FPGAs present scalability and energy-consumption challenges.
● CGRAs offer promising performance-energy balance for edge AI.

C/C++ Path: MLIR Dialect for DFG Extraction

● Polygeist tool converts source code to MLIR.
● MLIR-based extraction of vectorized computation kernels as 

Data Flow Graphs (DFGs).
● Custom MLIR dialect identifies operations compatible with 

available CGRA processing elements for acceleration.

ONNX Path: Operation Decomposition

● Direct ONNX parsing into structured JSON objects and 
Cytoscape graphs.

● Decomposition of high-level ONNX operations (like MatMul) 
into lower-level arithmetic/memory operations.

● Generation of detailed DFGs, suitable for mapping onto CGRA.

Ongoing Work

● Improving automatic identification and partitioning of CGRA-compatible computations.
● Implementing more powerful loop-level optimizations in the MLIR dialect.
● Extending ONNX support for diverse tensor operations.
● Refining validation methods.

● Unified MLIR-based compilation workflow targeting both 
C/C++ kernels and ONNX AI models for CGRA acceleration.

● Preserves high-level graph semantics throughout compilation, 
enhancing opportunities for optimization and debugging.

● Seamless integration of CGRA configuration instructions 
directly into RISC-V executable binaries, removing the need 
for external configuration memory.

● Streamlines the deployment process and accelerates the 
practical adoption of edge AI applications.

Results - Data Flow Graphs suitable for CGRA Mapping

Towards Offloading C/C++ Kernels and 
ONNX Models to CGRAs through MLIR

Nelson Neto1,2, José Pedro Ferreira1,2, Pedro Gonçalo Correia1,2, Juan Gallego3, 
Alfonso Rodríguez3, Andrés Otero3, Nuno Paulino1,2, João Bispo1,2

Conclusion

This workflow successfully unifies compilation of C/C++ kernels and ONNX models into a 
common graph format for CGRA acceleration. By preserving high-level semantics and 
embedding configuration directly in RISC-V binaries, it simplifies deployment and enhances 
edge AI performance, but can still be further optimized and extended.

Architecture Diagram Key Contributions

func.func @mac(%arg0: memref<?xi32>, %arg1: memref<?xi32>) -> i32 {
%c0_i32 = arith.constant 0 : i32
%0 = affine.for %arg2 = 0 to 100 iter_args(%arg3 = %c0_i32) -> (i32) {
%1 = affine.load %arg0[%arg2] : memref<?xi32>
%2 = affine.load %arg1[%arg2] : memref<?xi32>
%3 = arith.muli %1, %2 : i32
%4 = arith.addi %arg3, %3 : i32
affine.yield %4 : i32

}
return %0 : i32

}
(a) MLIR code generated by Polygeist for a C/C++ multiply and accumulate kernel

func.func @mac(%arg0: memref<?xi32>, %arg1: memref<?xi32>) -> i32 attributes
{llvm.linkage = #llvm.linkage<external>} {

%c0 = arith.constant 0 : index
%c0_i32 = arith.constant 0 : i32
"cgra.deploy" {
%0 = vector.transfer_read %arg0[%c0], %c0_i32 : memref<100xi32>, vector<100xi32>
%1 = vector.transfer_read %arg1[%c0], %c0_i32 : memref<100xi32>, vector<100xi32>
%2 = arith.muli %0, %1 : vector<100xi32>
%3 = vector.reduction <add>, %2 : vector<100xi32> into i32

}
return %3 : i32

}
(b) code kernel transformed and identified with the partitioning dialect

Project PCI2022-135077-2 funded by MICIU/AEI /10.13039/501100011033 and by 
European Union NextGenerationEU/PRTR (nº 101096658)

1 2

3Supported by Fundação para a Ciência e Tecnologia 
(FCT) PhD scholarship 2024.05584.BDANA

Supported by Chips Joint Undertaking (Chips JU) and National 
Authorities under grant agreement n° 101096658 (A-IQ READY)


	Slide 1

